Paleontology Wiki
No edit summary
 
W-Essjay (talk | contribs)
m ({{wikipedia|{{subst:PAGENAMEE}}}})
 
(2 intermediate revisions by one other user not shown)
Line 68: Line 68:
   
 
==External links==
 
==External links==
  +
{{Spoken Wikipedia|Cladistics.ogg|2005-04-30}}
 
 
* [http://www.amnh.org/learn/pd/fish_2/pdf/compleat_cladist.pdf The Compleat Cladist (pdf)]
 
* [http://www.amnh.org/learn/pd/fish_2/pdf/compleat_cladist.pdf The Compleat Cladist (pdf)]
 
* [http://rjohara.net/darwin/files/bmcr Example of cladistics used in textual criticism]
 
* [http://rjohara.net/darwin/files/bmcr Example of cladistics used in textual criticism]
Line 77: Line 77:
   
 
[[Category:Phylogenetics]]
 
[[Category:Phylogenetics]]
  +
  +
{{wikipedia|Clade}}

Latest revision as of 09:04, 27 February 2007

Cladogram-example1

This cladogram shows the relationship among various insect groups.

Cladogram-example2

Cladograms are tree-like relationship- diagrams.

Cladistics is a branch of biology that determines the evolutionary relationships between organisms based on derived similarities. It is the most prominent of several forms of phylogenetic systematics, which study the evolutionary relationships between organisms. Cladistics is a method of rigorous analysis, using "shared derived traits" (synapomorphies: see below) of the organisms being studied. Cladistic analysis forms the basis for most modern systems of biological classification, which seek to group organisms by evolutionary relationships. In contrast, phenetics groups organisms based on their overall similarity, while approaches that are more traditional tend to rely on key characters (morphology). The word cladistics is derived from the ancient Greek κλάδος, klados, "branch."

As the end result of a cladistic analysis, tree-like relationship-diagrams called "cladograms" are drawn up to show different hypotheses of relationships. A cladistic analysis can be based on as much or as little information as the researcher selects. Modern systematic research is likely to be based on a wide variety of information, including DNA-sequences (so called "molecular data"), biochemical data and morphological data.

In a cladogram, all organisms lie at the leaves, and each inner node is ideally binary (two-way). The two taxa on either side of a split are called sister taxa or sister groups. Each subtree, whether it contains one item or a hundred thousand items, is called a clade. A natural group has all the organisms contained in any one clade that share a unique ancestor (one which they do not share with any other organisms on the diagram) for that clade. Each clade is set off by a series of characteristics that appear in its members, but not in the other forms from which it diverged. These identifying characteristics of a clade are called synapomorphies (shared, derived characters). For instance, hardened front wings (elytra) are a synapomorphy of beetles, while circinate vernation, or the unrolling of new fronds, is a synapomorphy of ferns.

Willi Hennig (1913-1976) is widely regarded as the founder of cladistics.

Definitions

A character state (see below) that is present in both the outgroups (the nearest relatives of the group, that are not part of the group itself) and in the ancestors is called a plesiomorphy (meaning "close form", also called ancestral state). A character state that occurs only in later descendants is called an apomorphy (meaning "separate form", also called the "derived" state) for that group. The adjectives plesiomorphic and apomorphic are used instead of "primitive" and "advanced" to avoid placing value-judgments on the evolution of the character states, since both may be advantageous in different circumstances. It is not uncommon to informally refer to a collective set of plesiomorphies as a ground plan for the clade or clades they refer to.

Several more terms are defined for the description of cladograms and the positions of items within them. A species or clade is basal to another clade if it holds more plesiomorphic characters than that other clade. Usually a basal group is very species-poor as compared to a more derived group. It is not a requirement that a basal group is present. For example when considering birds and mammals together, neither is basal to the other: both have many derived characters.

A clade or species located within another clade can be described as nested within that clade.

Cladistic methods

A cladistic analysis is applied to a certain set of information. To organize this information a distinction is made between characters, and character states. Consider the color of feathers, this may be blue in one species but red in another. Thus, "red feathers" and "blue feathers" are two character states of the character "feather-color."

The researcher decides which character states were present before the last common ancestor of the species group (plesiomorphies) and which were present in the last common ancestor (synapomorphies) by considering one or more outgroups. An outgroup is an organism that is considered not to be part of the group in question, but is closely related to the group. This makes the choice of an outgroup an important task, since this choice can profoundly change the topology of a tree. Note that only synapomorphies are of use in characterising clades.

Next, different possible cladograms are drawn up and evaluated. Clades ideally have many "agreeing" synapomorphies. Ideally there is a sufficient number of true synapomorphies to overwhelm homoplasies caused by convergent evolution (i.e. characters that resemble each other because of environmental conditions or function, not because of common ancestry). A well-known example of homoplasy due to convergent evolution is the character wings. Though the wings of birds and insects may superficially resemble one another and serve the same function, each evolved independently. If a bird and an insect are both accidentally scored "POSITIVE" for the character "presence of wings", a homoplasy would be introduced into the dataset, and this gives a false picture of evolution.

Many cladograms are possible for any given set of taxa, but one is chosen based on the principle of parsimony: the most compact arrangement, that is, with the fewest character state changes (synapomorphies), is the hypothesis of relationship we tentatively accept (see Occam's razor for more on the principle of parsimony). Though at one time this analysis was done by hand, computers are now used to evaluate much larger data sets. Sophisticated software packages such as PAUP* allow the statistical evaluation of the confidence we have in the veracity of the nodes of a cladogram.

As DNA sequencing has become cheaper and easier, molecular systematics has become a more and more popular way to reconstruct phylogenies. Using a parsimony criterion is only one of several methods to infer a phylogeny from molecular data; maximum likelihood and Bayesian inference, which incorporate explicit models of sequence evolution, are non-Hennigian ways to evaluate sequence data. Another powerful method of reconstructing phylogenies is the use of genomic retrotransposon markers, which are thought to be less prone to the reversion and convergence that plagues sequence data.

Ideally, morphological, molecular and possibly other (behavioral etc.) phylogenies should be combined: none of the methods is "superior", but all have different intrinsic sources of error. For example, character convergence (homoplasy) is much more common in morphological data than in molecular sequence data, but character reversions are more common in the latter (see long branch attraction).

Cladistics does not assume any particular theory of evolution, only the background knowledge of descent with modification. Thus, cladistic methods can be, and recently have been, usefully applied to non-biological systems, including determining language families in historical linguistics and the filiation of manuscripts in textual criticism.

Cladistic classification

Clade types

Three ways to define a clade for use in a cladistic taxonomy.
Node-based: the most recent common ancestor of A and B and all its descendants.
Stem-based: all descendants of the oldest common ancestor of A and B that is not also an ancestor of Z.
Apomorphy-based: the most recent common ancestor of A and B possessing a certain apomorphy (derived character), and all its descendants.

A recent trend in biology since the 1960s, called cladism or cladistic taxonomy, requires taxa to be clades. In other words, cladists argue that the classification system should be reformed to eliminate all non-clades. In contrast, other taxonomists insist that groups reflect phylogenies and often make use of cladistic techniques, but allow both monophyletic and paraphyletic groups as taxa.

A monophyletic group is a clade, comprising an ancestral form and all of its descendants, and so forming one (and only one) evolutionary group. A paraphyletic group is similar, but excludes some of the descendants that have undergone significant changes. For instance, the traditional class Reptilia excludes birds even though they evolved from the ancestral reptile. Similarly, the traditional Invertebrates are paraphyletic because Vertebrates are excluded, although the latter evolved from an Invertebrate.

A group with members from separate evolutionary lines is called polyphyletic. For instance, the once-recognized Pachydermata was found to be polyphyletic because elephants and rhinoceroses arose from non-pachyderms separately. Evolutionary taxonomists consider polyphyletic groups to be errors in classification, often occurring because convergence or other homoplasy was misinterpreted as homology.

Following Hennig, cladists argue that paraphyly is as harmful as polyphyly. The idea is that monophyletic groups can be defined objectively, in terms of common ancestors or the presence of synapomorphies. In contrast, paraphyletic and polyphyletic groups are both defined based on key characters, and the decision of which characters are of taxonomic import is inherently subjective. Many argue that they lead to "gradistic" thinking, where groups advance from "lowly" grades to "advanced" grades, which can in turn lead to teleology. In evolutionary studies, teleology is usually avoided because it implies a plan that cannot be empirically demonstrated.

Going further, some cladists argue that ranks for groups above species are too subjective to present any meaningful information, and so argue that they should be abandoned. Thus they have moved away from Linnaean taxonomy towards a simple hierarchy of clades. The validity of this argument hinges crucially on how often in evolution gradualist near-equilibria are punctuated. A quasi-stable state will result in phylogenies, which may be all but unmappable onto the Linnaean hierarchy, whereas a punctuation event that balances a taxon out of its ecological equilibrium is likely to lead to a split between clades that occurs in comparatively short time and thus lends itself readily for classification according to the Linnaean system.

Other evolutionary systematists argue that all taxa are inherently subjective, even when they reflect evolutionary relationships, since living things form an essentially continuous tree. Any dividing line is artificial, and creates both a monophyletic section above and a paraphyletic section below. Paraphyletic taxa are necessary for classifying earlier sections of the tree – for instance, the early vertebrates that would someday evolve into the family Hominidae cannot be placed in any other monophyletic family. They also argue that paraphyletic taxa provide information about significant changes in organisms' morphology, ecology, or life history – in short, that both taxa and clades are valuable but distinct notions, with separate purposes. Many use the term monophyly in its older sense, where it includes paraphyly, and use the alternate term holophyly to describe clades (monophyly in Hennig's sense). As an unscientific rule of thumb, if a distinct lineage that renders the containing clade paraphyletic has undergone marked adaptive radiation and collected many synapomorphies - especially ones that are radical and/or unprecedented -, the paraphyly is usually not considered a sufficient argument to prevent recognition of the lineage as distinct under the Linnaean system (but it is by definition sufficient in phylogenetic nomenclature). For example, as touched upon briefly above, the Sauropsida ("reptiles") and the Aves (birds) are both ranked as a Linnaean class, although the latter are a highly derived offshoot of some forms of the former which themselves were already quite advanced.

A formal code of phylogenetic nomenclature, the PhyloCode, is currently under development for cladistic taxonomy. It is intended for use by both those who would like to abandon Linnaean taxonomy and those who would like to use taxa and clades side by side. In several instances (see for example Hesperornithes) it has been employed to clarify uncertainties in Linnaean systematics so that in combination they yield a taxonomy that is unambiguously placing the group in the evolutionary tree in a way that is consistent with current knowledge.

See also

References

  • de Queiroz K and Gauthier JA (1992) Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23: 449–480.
  • Hamdi H, Nishio H, Zielinski R, Dugaiczyk A (1999) Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. Journal of Molecular Biology 289: 861–871.
  • Kitching IJ, Forey PL, Humphries CJ and Williams DM (1998) Cladistics, 2nd edn. Oxford: Oxford University Press.
  • Patterson C (1982) Morphological characters and homology. In: Joysey KA and Friday AE (eds) Problems in Phylogenetic Reconstruction. London: Academic Press.
  • Shedlock AM, Okada N (2000) SINE insertions: Powerful tools for molecular systematics. Bioessays 22: 148–160.
  • Swofford DL, Olsen GJ, Waddell PJ and Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C and Mable BK (eds) Molecular Systematics. Sunderland, MA: Sinauer Associates.
  • Wiley EO (1981) Phylogenetics: The Theory and Practice of Phylogenetic Systematics. New York: Wiley Interscience.

External links

Topics in phylogenetics
v  d  e
Relevant fields: phylogenetics | computational phylogenetics | molecular phylogeny | cladistics
Basic concepts: synapomorphy | phylogenetic tree | phylogenetic network | long branch attraction
Phylogeny inference methods: maximum parsimony | maximum likelihood | neighbour joining | UPGMA | Bayesian inference
Current topics: PhyloCode | DNA barcoding
List of evolutionary biology topics


Smallwikipedialogo.png This page uses content from Wikipedia. The original article was at Clade. The list of authors can be seen in the page history. As with Paleontology Wiki, the text of Wikipedia is available under the GNU Free Documentation License.