Paleontology Wiki
Advertisement

The Cambrian is a major division of the geologic timescale that begins about 542 ± 1.0 (million years ago) at the end of the Proterozoic eon and ended about 488.3 ± 1.7 Ma with the beginning of the Ordovician period (ICS, 2004). It is the first period of the Paleozoic era of the Phanerozoic eon.

The Cambrian is the earliest period in whose rocks are found numerous large, distinctly fossilizable multicellular organisms that are more complex than sponges or medusoids. During this time, roughly fifty separate major groups of organisms or "phyla" (a phylum defines the basic body plan of some group of modern or extinct animals) emerged suddenly, in most cases without evident precursors (Gould, 1989). This radiation of animal phyla is referred to as the Cambrian explosion.

Paleozoic era
Cambrian Ordovician Silurian Devonian Carboniferous Permian

Cambrian subdivisions[]

The Cambrian period follows after the Neoproterozoic and is followed by the Ordovician period. The Cambrian is divided into three epochs — the Early Cambrian (Caerfai or Waucoban), Middle Cambrian (St Davids or Albertian) and Furongian (also known as Late Cambrian, Merioneth or Croixan). Rocks of these epochs are referred to as belonging to the Lower, Middle, or Upper Cambrian.

Each of the epochs are divided into two faunal stages. Only one, the Paibian, has been recognized by the International Commission on Stratigraphy, and others are still unnamed. However, the Cambrian is divided into several regional faunal stages:

Chinese North American Russian-Kazakhian Australian Regional
Furongian Ibexian (part) Ayusokkanian Idamean Dolgellian
Sunwaptan Sakian Mindyallan Festiniogian
Steptoan Aksayan Payntonian Maentwrogian
Marjuman Batyrbayan
Middle Cambrian Maozhangian Mayan Boomerangian
Zuzhuangian Delamaran Amgan Undillian
Zhungxian Florian
Templetonian
  Dyeran Ordian
Early Cambrian Longwangmioan Toyonian Lenian
Changlangpuan Montezuman Botomian
Qungzusian Atdabanian
Meishuchuan Tommotian
Nemakit-Daldynian

Cambrian dating[]

The time range for the Cambrian has classically been thought to have been from about 500 mya to about 570 mya. The lower boundary of the Cambrian was traditionally set at the earliest appearance of early arthropods known as trilobites and of primitive reef-forming animals known as archeocyathids. The end of the period was eventually set at a fairly definite faunal change now identified as an extinction event. Fossil discoveries and radioactive dating in the last quarter of the 20th century have called these dates into question. Date inconsistencies as large as 20 Ma are common between authors. Framing dates of ca. (approximately) 545 to 490 mya were proposed by the International Subcommission on Global Stratigraphy as recently as 2002.

A radiometric date from New Brunswick puts the end of the first stage of the Cambrian around 511 mya. This leaves 21 Ma for the other two stages of the Cambrian.

A more precise date of 542 ± 0.3 mya for the extinction event at the beginning of the Cambrian has recently been submitted. The rationale for this precise dating is interesting in itself as an example of paleological deductive reasoning. Exactly at the Cambrian boundary there is a marked fall in the abundance of carbon-13, a "reverse spike" that paleontologists call an excursion. It is so widespread that it is the best indicator of the position of the Precambrian-Cambrian boundary in stratigraphic sequences of roughly this age. One of the places that this well-established carbon-13 excursion occurs is in Oman. Amthor (2003) describes evidence from Oman that indicates the carbon-isotope excursion relates to a mass extinction: the disappearance of distinctive fossils from the pre-Cambrian coincides exactly with the carbon-13 anomaly. Fortunately, in the Oman sequence, so too does a volcanic ash horizon from which zircons provide a very precise age of 542 ± 0.3 Ma (calculated on the decay rate of uranium to lead). This new and precise date tallies with the less precise dates for the carbon-13 anomaly, derived from sequences in Siberia and Namibia. It is presented here as likely to become accepted as the definitive age for the start of the Phanerozoic eon, and thus the start of the Palaeozoic era and the Cambrian period.

Cambrian paleogeography[]

Cambrian continents are thought to have resulted from the breakup of a Neoproterozoic supercontinent called Pannotia. The waters of the Cambrian period appear to have been widespread and shallow. It is thought that Cambrian climates were significantly warmer than those of preceding times that experienced extensive ice ages discussed as the Varanger glaciation. Also there was no glaciation at the poles. Continental drift rates in the Cambrian may have been anomalously high. Laurentia, Baltica and Siberia remained independent continents since the break-up of the supercontinent of Pannotia. Gondwana started to drift towards the South Pole. Panthalassa covered most of the southern hemisphere, and minor oceans included the Proto-Tethys Ocean, Iapetus Ocean, and Khanty Ocean, all of which expanded by this time.

Cambrian fauna[]

File:Trilobite Redlichia.jpg

Fossil trilobite Redlichia chinensis from the Cambrian of China

Aside from a few enigmatic forms that may or may not represent animals, all modern animal phyla with any fossil record to speak of (except bryozoans) appear to have representatives in the Cambrian, and of these most except sponges seem to have originated just after or just before the start of the period. However, several modern phyla, primarily those with small and/or soft bodies, have no fossil record, in the Cambrian or otherwise. Many extinct phyla and odd animals that have unclear relationships to other animals also appear in the Cambrian. The apparent "sudden" appearance of very diverse faunas over a period of no more than a few tens of millions of years is referred to as the "Cambrian Explosion". Also the first possible tracks on land dating to 530 ma appeared at this time.

The best studied sites where the soft parts of organisms have fossilized are in the Burgess shale of British Columbia. They represent strata from the Middle Cambrian and provide us with a wealth of information on early animal diversity. Similar faunas have subsequently been found in a number of other places — most importantly in very early Cambrian shales in the People's Republic of China's Yunnan Province (see Maotianshan shales). Fairly extensive Precambrian Ediacaran faunas have been identified in the past 50 years, but their relationships to Cambrian forms are quite obscure.

Cambrian flora[]

Generally it is accepted that there were no land plants at this time although molecular dating suggests that land plants appeared earlier, in the Precambrian about 700 ma and fungi about 1 billion years ago also in the Precambrian. The land at this time was a barren land of desert and badlands. Marine green algae probably appeared at this time, and they eventually evolved into land plants, in the Late Ordovician.

Fungal life[]

There were also no land fungi at this time. Marine fungi were probably common in the oceans.

Name[]

The Cambrian is named for Cambria, the classical name for Wales, the area where rocks from this time period were first studied.

References[]

External links[]

Cambrian period
Early Cambrian Middle Cambrian Furongian
Stage 1 | Stage 2 Stage 3 | Stage 4 | Stage 5
Stage 6 | Stage 7
Paibian | Stage 9
Stage 10



Smallwikipedialogo.png This page uses content from Wikipedia. The original article was at Cambrian. The list of authors can be seen in the page history. As with Paleontology Wiki, the text of Wikipedia is available under the GNU Free Documentation License.
Advertisement